My "blind" friend.

Status
Not open for further replies.

Jamil

@hydrogen
Reputation
0
My friend claims that he is “blind”. I know he’s not blind, because he answers me when i talk to him. He has great hearing. He is 16 and he wears sunglasses all the time. Even when he’s indoors, I usually just punch him for doing that. He thinks he’s cool. He has some bad reflexes because he never flinches. I know he’s not blind because he can find the ground and the scars, bruises, and gashes i give him. I don’t know why he crys so much.

I gave him a pet dog, but i guess he wasn’t looking where he was walking and it fell in the drainage hole. He need to watch where he walks, especially with his stupid stick. He keeps rubbing it on the ground. I tell him, he should throw away the stick, but he keeps saying no.

My only question is: If he’s blind, then how can he hear me talk?
 
This should go into spamming and trolling, but it was a pretty funny read. My answer to your question though, is that his ears are so bad he has to rely on his eyesight to read your lips.
 
My only question is: If he’s blind, then how can he hear me talk?
I think you're confusing being blind with being deaf, bud.
 
Solar said:
I think you're confusing being blind with being deaf, bud.

"Blindness is the condition of poor audio perception."

-Wikipedia
 
Jamil said:
"Blindness is the condition of poor audio perception."

-Wikipedia

"Blindness is the condition of poor visual perception." - [Wikipedia]

"Hearing loss, hearing impairment, or deafness, is a partial or total inability to hear." - [Wikipedia]
 
Solar said:
"Blindness is the condition of poor visual perception." - [Wikipedia]

"Hearing loss, hearing impairment, or deafness, is a partial or total inability to hear." - [Wikipedia]

You must be blind for not realizing the section...
 
Jamil said:
You must be blind for not realizing the section...

No, I realized what section this is in. I'm just bored out of my mind.
 
Leader said:
Your mom, not to the rescue.

My mom is Wonder Woman. What now.
 
Leader said:

Pineapple.                   
 
Leader said:
int error_reporting ([ int $level ] )

I don't understand. Heterozygous?
 
Solar said:
I don't understand. Heterozygous?

f(θ)=100(A2B3−A3B2)2−(c1B3−c2B2)2−(c2A2−c1A3)2=0,
where:
A2=3cos(θ)−5
B2=3sin(θ)
A3=3(cos(θ)−sin(θ))
B3=3(cos(θ)+sin(θ))−6
c1=p22−25−A22−B22
c2=−16−A23−B23
 
Leader said:
f(θ)=100(A2B3−A3B2)2−(c1B3−c2B2)2−(c2A2−c1A3)2=0,
where:
A2=3cos(θ)−5
B2=3sin(θ)
A3=3(cos(θ)−sin(θ))
B3=3(cos(θ)+sin(θ))−6
c1=p22−25−A22−B22
c2=−16−A23−B23

Damn, I never knew they accepted newkids to be staff!
 
Leader said:
f(θ)=100(A2B3−A3B2)2−(c1B3−c2B2)2−(c2A2−c1A3)2=0,
where:
A2=3cos(θ)−5
B2=3sin(θ)
A3=3(cos(θ)−sin(θ))
B3=3(cos(θ)+sin(θ))−6
c1=p22−25−A22−B22
c2=−16−A23−B23

Pi (π) = 3.141592653589793238462643383279502884197169399375105820974944592307816406286 208998628034825342117067982148086513282306647093844609550582231725359408128481 117450284102701938521105559644622948954930381964428810975665933446128475648233 786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496 252451749399651431429809190659250937221696461515709858387410597885959772975498 930161753928468138268683868942774155991855925245953959431049972524680845987273 644695848653836736222626099124608051243884390451244136549762780797715691435997 700129616089441694868555848406353422072225828488648158456028506016842739452267 467678895252138522549954666727823986456596116354886230577456498035593634568174 324112515076069479451096596094025228879710893145669136867228748940560101503308 617928680920874760917824938589009714909675985261365549781893129784821682998948 722658804857564014270477555132379641451523746234364542858444795265867821051141 354735739523113427166102135969536231442952484937187110145765403590279934403742 007310578539062198387447808478489683321445713868751943506430218453191048481005 370614680674919278191197939952061419663428754440643745123718192179998391015919 561814675142691239748940907186494231961567945208095146550225231603881930142093 762137855956638937787083039069792077346722182562599661501421503068038447734549 202605414665925201497442850732518666002132434088190710486331734649651453905796 268561005508106658796998163574736384052571459102897064140110971206280439039759 515677157700420337869936007230558763176359421873125147120532928191826186125867 321579198414848829164470609575270695722091756711672291098169091528017350671274 858322287183520935396572512108357915136988209144421006751033467110314126711136 990865851639831501970165151168517143765761835155650884909989859982387345528331 635507647918535893226185489632132933089857064204675259070915481416549859461637 180270981994309924488957571282890592323326097299712084433573265489382391193259 746366730583604142813883032038249037589852437441702913276561809377344403070746 921120191302033038019762110110044929321516084244485963766983895228684783123552 658213144957685726243344189303968642624341077322697802807318915441101044682325 271620105265227211166039666557309254711055785376346682065310989652691862056476 931257058635662018558100729360659876486117910453348850346113657686753249441668 039626579787718556084552965412665408530614344431858676975145661406800700237877 659134401712749470420562230538994561314071127000407854733269939081454664645880 797270826683063432858785698305235808933065757406795457163775254202114955761581 400250126228594130216471550979259230990796547376125517656751357517829666454779 174501129961489030463994713296210734043751895735961458901938971311179042978285 647503203198691514028708085990480109412147221317947647772622414254854540332157 185306142288137585043063321751829798662237172159160771669254748738986654949450 114654062843366393790039769265672146385306736096571209180763832716641627488880 078692560290228472104031721186082041900042296617119637792133757511495950156604 963186294726547364252308177036751590673502350728354056704038674351362222477158 915049530984448933309634087807693259939780541934144737744184263129860809988868 741326047215695162396586457302163159819319516735381297416772947867242292465436 680098067692823828068996400482435403701416314965897940924323789690706977942236 250822168895738379862300159377647165122893578601588161755782973523344604281512 627203734314653197777416031990665541876397929334419521541341899485444734567383 162499341913181480927777103863877343177207545654532207770921201905166096280490 926360197598828161332316663652861932668633606273567630354477628035045077723554 710585954870279081435624014517180624643626794561275318134078330336254232783944 975382437205835311477119926063813346776879695970309833913077109870408591337464 144282277263465947047458784778720192771528073176790770715721344473060570073349 243693113835049316312840425121925651798069411352801314701304781643788518529092 854520116583934196562134914341595625865865570552690496520985803385072242648293 972858478316305777756068887644624824685792603953527734803048029005876075825104 747091643961362676044925627420420832085661190625454337213153595845068772460290 161876679524061634252257719542916299193064553779914037340432875262888963995879 475729174642635745525407909145135711136941091193932519107602082520261879853188 770584297259167781314969900901921169717372784768472686084900337702424291651300 500516832336435038951702989392233451722013812806965011784408745196012122859937 162313017114448464090389064495444006198690754851602632750529834918740786680881 833851022833450850486082503930213321971551843063545500766828294930413776552793 975175461395398468339363830474611996653858153842056853386218672523340283087112 328278921250771262946322956398989893582116745627010218356462201349671518819097 303811980049734072396103685406643193950979019069963955245300545058068550195673 022921913933918568034490398205955100226353536192041994745538593810234395544959 7783779023742161727111723643435439478221818528624085140066604433258 (continued)
 
Solar said:
Pi (π) = 3.141592653589793238462643383279502884197169399375105820974944592307816406286 208998628034825342117067982148086513282306647093844609550582231725359408128481 117450284102701938521105559644622948954930381964428810975665933446128475648233 786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496 252451749399651431429809190659250937221696461515709858387410597885959772975498 930161753928468138268683868942774155991855925245953959431049972524680845987273 644695848653836736222626099124608051243884390451244136549762780797715691435997 700129616089441694868555848406353422072225828488648158456028506016842739452267 467678895252138522549954666727823986456596116354886230577456498035593634568174 324112515076069479451096596094025228879710893145669136867228748940560101503308 617928680920874760917824938589009714909675985261365549781893129784821682998948 722658804857564014270477555132379641451523746234364542858444795265867821051141 354735739523113427166102135969536231442952484937187110145765403590279934403742 007310578539062198387447808478489683321445713868751943506430218453191048481005 370614680674919278191197939952061419663428754440643745123718192179998391015919 561814675142691239748940907186494231961567945208095146550225231603881930142093 762137855956638937787083039069792077346722182562599661501421503068038447734549 202605414665925201497442850732518666002132434088190710486331734649651453905796 268561005508106658796998163574736384052571459102897064140110971206280439039759 515677157700420337869936007230558763176359421873125147120532928191826186125867 321579198414848829164470609575270695722091756711672291098169091528017350671274 858322287183520935396572512108357915136988209144421006751033467110314126711136 990865851639831501970165151168517143765761835155650884909989859982387345528331 635507647918535893226185489632132933089857064204675259070915481416549859461637 180270981994309924488957571282890592323326097299712084433573265489382391193259 746366730583604142813883032038249037589852437441702913276561809377344403070746 921120191302033038019762110110044929321516084244485963766983895228684783123552 658213144957685726243344189303968642624341077322697802807318915441101044682325 271620105265227211166039666557309254711055785376346682065310989652691862056476 931257058635662018558100729360659876486117910453348850346113657686753249441668 039626579787718556084552965412665408530614344431858676975145661406800700237877 659134401712749470420562230538994561314071127000407854733269939081454664645880 797270826683063432858785698305235808933065757406795457163775254202114955761581 400250126228594130216471550979259230990796547376125517656751357517829666454779 174501129961489030463994713296210734043751895735961458901938971311179042978285 647503203198691514028708085990480109412147221317947647772622414254854540332157 185306142288137585043063321751829798662237172159160771669254748738986654949450 114654062843366393790039769265672146385306736096571209180763832716641627488880 078692560290228472104031721186082041900042296617119637792133757511495950156604 963186294726547364252308177036751590673502350728354056704038674351362222477158 915049530984448933309634087807693259939780541934144737744184263129860809988868 741326047215695162396586457302163159819319516735381297416772947867242292465436 680098067692823828068996400482435403701416314965897940924323789690706977942236 250822168895738379862300159377647165122893578601588161755782973523344604281512 627203734314653197777416031990665541876397929334419521541341899485444734567383 162499341913181480927777103863877343177207545654532207770921201905166096280490 926360197598828161332316663652861932668633606273567630354477628035045077723554 710585954870279081435624014517180624643626794561275318134078330336254232783944 975382437205835311477119926063813346776879695970309833913077109870408591337464 144282277263465947047458784778720192771528073176790770715721344473060570073349 243693113835049316312840425121925651798069411352801314701304781643788518529092 854520116583934196562134914341595625865865570552690496520985803385072242648293 972858478316305777756068887644624824685792603953527734803048029005876075825104 747091643961362676044925627420420832085661190625454337213153595845068772460290 161876679524061634252257719542916299193064553779914037340432875262888963995879 475729174642635745525407909145135711136941091193932519107602082520261879853188 770584297259167781314969900901921169717372784768472686084900337702424291651300 500516832336435038951702989392233451722013812806965011784408745196012122859937 162313017114448464090389064495444006198690754851602632750529834918740786680881 833851022833450850486082503930213321971551843063545500766828294930413776552793 975175461395398468339363830474611996653858153842056853386218672523340283087112 328278921250771262946322956398989893582116745627010218356462201349671518819097 303811980049734072396103685406643193950979019069963955245300545058068550195673 022921913933918568034490398205955100226353536192041994745538593810234395544959 7783779023742161727111723643435439478221818528624085140066604433258 (continued)

The Illuminati (plural of Latin illuminatus, "enlightened") is a name given to several groups, both real and fictitious. Historically, the name refers to the Bavarian Illuminati, an Enlightenment-era secret society founded on May 1, 1776 to oppose superstition, prejudice, religious influence over public life, abuses of state power, and to support women's education and gender equality. The Illuminati—along with other secret societies—were outlawed by the Bavarian ruler, Charles Theodore, with the encouragement of the Roman Catholic Church, and permanently disbanded in 1785.[1] In the several years following, the group was vilified by conservative and religious critics who claimed they had regrouped and were responsible for the French Revolution.

In subsequent use, "Illuminati" refers to various organizations claiming or purported to have unsubstantiated links to the original Bavarian Illuminati or similar secret societies, and often alleged to conspire to control world affairs by masterminding events and planting agents in government and corporations to establish a New World Order and gain further political power and influence. Central to some of the most widely known and elaborate conspiracy theories, the Illuminati have been depicted as lurking in the shadows and pulling the strings and levers of power in dozens of novels, movies, television shows, comics, video games, and music videos.
 
Status
Not open for further replies.
Back
Top